Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite

Authors

  • Hadi Beitollahi Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
  • Mohammad Reza Ganjali Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran.| Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
  • Somayeh Tajik NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran.
Abstract:

A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared with bare SPE the GO/Fe3O4@SiO2/SPE exhibited excellent electrocatalytic activity toward the oxidation of acetaminophen. The plot of catalytic current versus acetaminophen concentration showed a linear segment in the concentration range 0.5 to 100.0 µM. The detection limit of 0.1 µM was obtained using calibration plot. Also the anodic peaks of acetaminophen and tryptophan in their mixture can be well separated. The GO/Fe3O4@SiO2/SPE has been successfully applied and validated by analyzing acetaminophen and tryptophan in urine and pharmaceutical samples.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

full text

Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

full text

Voltammetric Determination of Tryptophan Using a Carbon Paste Electrode Modified with Magnesium Core Shell Nanocomposite and Ionic Liquids

A novel carbon paste electrode modified with ionic liquid (n-hexyl-3-methylimidazolium hexafluoro phosphate) and magnetic core-shell manganese ferrite nanoparticles (MCSILCPE) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for electro-oxidation of tryptophan, is described. Cyclic voltammetry (CV), choronoamperometry (CHA) and square wave voltammet...

full text

A New Sensor Based on Graphite Screen Printed Electrode Modified With Cu-Nanocomplex for Determination of Paracetamol

Paracetamol is a non-steroidal anti-inflammatory drug used as an antipyretic agent for the alternative to aspirin. Conversely, the overdoses of paracetamol can cause hepatic toxicity and kidney damage. Hence, the determination of paracetamol receives much more attention in biological samples and also in pharmaceutical formulations. Here, we report a rapid<span id="transmark" style="display: non...

full text

An electrochemical acetaminophen sensor based on La3+/Co3O4 nanoflowers modified graphite screen printed electrode architecture

In this study, the La3+/Co3O4 nanoflowers were synthesized by co-precipitation method. The morphology of the La3+/Co3O4NFs were characterized using scanning electron microscopy (SEM), and were further used to modify the graphite screen printed electrode (GSPE). The electrochemical behavior of acetaminophen at La3+/Co<s...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 18  issue 1

pages  80- 90

publication date 2019-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023